Fuzzy clusterwise quasi-likelihood generalized linear models
نویسندگان
چکیده
The quasi-likelihood method has emerged as a useful approach to the parameter estimation of generalized linear models (GLM) in circumstances where there is insufficient distributional information to construct a likelihood function. Despite its flexibility, the quasi-likelihood approach to GLM is currently designed for an aggregate-sample analysis based on the assumption that the entire sample of observations is taken from a single homogenous population. Thus, this approach may not be suitable when heterogeneous subgroups exist in the population, which involve qualitatively distinct effects of covariates on the response variable. In this paper, the quasi-likelihood GLM approach is generalized to a fuzzy clustering framework which explicitly accounts for such cluster-level heterogeneity. A simple iterative estimation algorithm is presented to optimize the regularized fuzzy clustering criterion of the proposed method. The performance of the proposed method in recovering parameters is investigated based on a Monte Carlo analysis involving synthetic data. Finally, the empirical usefulness of the proposed method is illustrated through an application to actual data on the coupon usage behaviour of a sample of consumers.
منابع مشابه
Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable
The traditional regression analysis is usually applied to homogeneous observations. However, there are several real situations where the observations are not homogeneous. In these cases, by utilizing the traditional regression, we have a loss of performance in fitting terms. Then, for improving the goodness of fit, it is more suitable to apply the so-called clusterwise regression analysis. The ...
متن کاملAn Extended Empirical Likelihood for Generalized Linear Models
The paper considers improving the efficiency of parameter estimation of the quasi-likelihood in generalized linear models. The improvement is offered by employing the empirical likelihood and incorporating extra constraints which better utilize the provided variance structure of the models. We recommend a particular choice for the extra constraints to reduce the variance of the quasi-likelihood...
متن کاملRegularized fuzzy clusterwise ridge regression
Fuzzy clusterwise regression has been a useful method for investigating cluster-level heterogeneity of observations based on linear regression. This method integrates fuzzy clustering and ordinary least-squares regression, thereby enabling to estimate regression coefficients for each cluster and fuzzy cluster memberships of observations simultaneously. In practice, however, fuzzy clusterwise re...
متن کاملLocal Polynomial Kernel Regression for Generalized Linear Models and Quasi-Likelihood Functions
Generalized linear models (Wedderburn and NeIder 1972, McCullagh and NeIder 1988) were introduced as a means of extending the techniques of ordinary parametric regression to several commonly-used regression models arising from non-normal likelihoods. Typically these models have a variance that depends on the mean function. However, in many cases the likelihood is unknown, but the relationship b...
متن کاملAsymptotic Normality of Maximum Quasi-Likelihood Estimators in Generalized Linear Models with Fixed Design
Received: 22 August 2007 / Revised: 7 April 2008 c ©2008 Springer Science + Business Media, LLC Abstract In generalized linear models with fixed design, under the assumption λn → ∞ and other regularity conditions, the asymptotic normality of maximum quasi-likelihood estimator β̂n, which is the root of the quasi-likelihood equation with natural link function ∑n i=1 Xi(yi−μ(X ′ iβ)) = 0, is obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Data Analysis and Classification
دوره 4 شماره
صفحات -
تاریخ انتشار 2010